Activation of a dormant replication origin is essential for Haloferax mediterranei lacking the primary origins
نویسندگان
چکیده
The use of multiple origins for chromosome replication has been demonstrated in archaea. Similar to the dormant origins in eukaryotes, some potential origins in archaea appear to be inactive during genome replication. We have comprehensively explored the origin utilization in Haloferax mediterranei. Here we report three active chromosomal origins by genome-wide replication profiling, and demonstrate that when these three origins are deleted, a dormant origin becomes activated. Notably, this dormant origin cannot be further deleted when the other origins are already absent and vice versa. Interestingly, a potential origin that appears to stay dormant in its native host H. volcanii lacking the main active origins becomes activated and competent for replication of the entire chromosome when integrated into the chromosome of origin-deleted H. mediterranei. These results indicate that origin-dependent replication is strictly required for H. mediterranei and that dormant replication origins in archaea can be activated if needed.
منابع مشابه
Cell Timer/Cell Clock
Like the biological clock in the body, replication of each cell type (even different cells of the same organism) follows a timing program. Abnormal function of this timer could be an alarm for a disease like cancer. DNA replication starts from a specific point on the chromosome that is called the origin of replication. In contrast to prokaryotes in which DNA replication starts from a single ...
متن کاملActivation of dormant origins of DNA replication in budding yeast.
Eukaryotic genomes often contain more potential replication origins than are actually used during S phase. The molecular mechanisms that prevent some origins from firing are unknown. Here we show that dormant replication origins on the left arm of budding yeast chromosome III become activated when both passive replication through them is prevented and the Mec1/Rad53 checkpoint that blocks late-...
متن کاملA concomitant loss of dormant origins and FANCC exacerbates genome instability by impairing DNA replication fork progression
Accumulating evidence suggests that dormant DNA replication origins play an important role in the recovery of stalled forks. However, their functional interactions with other fork recovery mechanisms have not been tested. We previously reported intrinsic activation of the Fanconi anemia (FA) pathway in a tumor-prone mouse model (Mcm4chaos3) with a 60% loss of dormant origins. To understand this...
متن کاملChk1 inhibits replication factory activation but allows dormant origin firing in existing factories
Replication origins are licensed by loading MCM2-7 hexamers before entry into S phase. However, only ∼10% of licensed origins are normally used in S phase, with the others remaining dormant. When fork progression is inhibited, dormant origins initiate nearby to ensure that all of the DNA is eventually replicated. In apparent contrast, replicative stress activates ataxia telangiectasia and rad-3...
متن کاملThe CDK regulators Cdh1 and Sic1 promote efficient usage of DNA replication origins to prevent chromosomal instability at a chromosome arm
Robustness and completion of DNA replication rely on redundant DNA replication origins. Reduced efficiency of origin licensing is proposed to contribute to chromosome instability in CDK-deregulated cell cycles, a frequent alteration in oncogenesis. However, the mechanism by which this instability occurs is largely unknown. Current models suggest that limited origin numbers would reduce fork den...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015